Caros Leitores;
Nota do editor: Este post destaca dados da ciência Webb em andamento, que ainda não passaram pelo processo de revisão por pares.
O Telescópio Espacial James Webb da NASA capturou suas primeiras imagens e espectros de Marte em 5 de setembro. , complementando os dados coletados por orbitadores, rovers e outros telescópios.
O posto de observação exclusivo de Webb a quase um milhão de milhas de distância no ponto Sol-Terra Lagrange 2 (L2) fornece uma visão do disco observável de Marte (a parte do lado iluminado pelo sol que está de frente para o telescópio). Como resultado, o Webb pode capturar imagens e espectros com a resolução espectral necessária para estudar fenômenos de curto prazo como tempestades de poeira, padrões climáticos, mudanças sazonais e, em uma única observação, processos que ocorrem em diferentes momentos (dia, pôr do sol e noite) de um dia marciano.
Por estar tão perto, o Planeta Vermelho é um dos objetos mais brilhantes do céu noturno em termos de luz visível (que os olhos humanos podem ver) e luz infravermelha que o Webb foi projetado para detectar. Isso representa desafios especiais para o observatório, que foi construído para detectar a luz extremamente fraca das galáxias mais distantes do universo. Os instrumentos de Webb são tão sensíveis que, sem técnicas especiais de observação, a luz infravermelha brilhante de Marte é ofuscante, causando um fenômeno conhecido como “saturação do detector”. Os astrônomos ajustaram o brilho extremo de Marte usando exposições muito curtas, medindo apenas parte da luz que atingiu os detectores e aplicando técnicas especiais de análise de dados.
As primeiras imagens de Webb de Marte, capturadas pela Near-Infrared Camera (NIRCam), mostram uma região do hemisfério oriental do planeta em dois comprimentos de onda diferentes, ou cores de luz infravermelha. Esta imagem mostra um mapa de referência de superfície da NASA e o Mars Orbiter Laser Altimeter (MOLA) à esquerda, com os dois campos de visão do instrumento Webb NIRCam sobrepostos. As imagens de infravermelho próximo do Webb são mostradas à direita.
A imagem de comprimento de onda mais curto do NIRCam (2,1 mícrons) [canto superior direito] é dominada pela luz solar refletida e, portanto, revela detalhes da superfície semelhantes aos aparentes nas imagens de luz visível [esquerda]. Os anéis da Cratera Huygens, a rocha vulcânica escura de Syrtis Major e o brilho na Bacia de Hellas são todos aparentes nesta imagem.
A imagem de comprimento de onda mais longo do NIRCam (4,3 mícrons) [inferior direito] mostra a emissão térmica – luz emitida pelo planeta à medida que perde calor. O brilho da luz de 4,3 mícrons está relacionado à temperatura da superfície e da atmosfera. A região mais brilhante do planeta é onde o Sol está quase acima, porque geralmente é mais quente. O brilho diminui em direção às regiões polares, que recebem menos luz solar, e menos luz é emitida do hemisfério norte mais frio, que está passando pelo inverno nesta época do ano.
No entanto, a temperatura não é o único fator que afeta a quantidade de luz de 4,3 mícrons que atinge o Webb com este filtro. À medida que a luz emitida pelo planeta passa pela atmosfera de Marte, parte é absorvida pelas moléculas de dióxido de carbono (CO 2 ). A Bacia de Hellas – que é a maior estrutura de impacto bem preservada em Marte, abrangendo mais de 2.000 quilômetros – parece mais escura do que os arredores por causa desse efeito.
“Na verdade, isso não é um efeito térmico em Hellas”, explicou o investigador principal, Geronimo Villanueva , do Goddard Space Flight Center da NASA , que projetou essas observações do Webb. “A Bacia de Hellas é uma altitude mais baixa e, portanto, experimenta uma pressão atmosférica mais alta. Essa pressão mais alta leva a uma supressão da emissão térmica nessa faixa de comprimento de onda específica [4,1-4,4 mícrons] devido a um efeito chamado alargamento de pressão. Será muito interessante separar esses efeitos concorrentes nesses dados”.
Villanueva e sua equipe também lançaram o primeiro espectro infravermelho próximo de Webb de Marte, demonstrando o poder de Webb de estudar o Planeta Vermelho com espectroscopia .
Enquanto as imagens mostram diferenças de brilho integradas em um grande número de comprimentos de onda de um lugar para outro do planeta em um determinado dia e hora, o espectro mostra as variações sutis de brilho entre centenas de diferentes comprimentos de onda representativos do planeta como um todo. Os astrônomos analisarão as características do espectro para coletar informações adicionais sobre a superfície e a atmosfera do planeta.
Este espectro infravermelho foi obtido pela combinação de medições de todos os seis modos de espectroscopia de alta resolução do Near-Infrared Spectrograph (NIRSpec) da Webb. A análise preliminar do espectro mostra um rico conjunto de características espectrais que contêm informações sobre poeira, nuvens geladas, que tipo de rochas estão na superfície do planeta e a composição da atmosfera. As assinaturas espectrais – incluindo vales profundos conhecidos como características de absorção – de água, dióxido de carbono e monóxido de carbono são facilmente detectadas com o Webb. Os pesquisadores estão analisando os dados espectrais dessas observações e estão preparando um artigo que será submetido a uma revista científica para revisão e publicação por pares.
No futuro, a equipe de Marte usará essas imagens e dados espectroscópicos para explorar as diferenças regionais em todo o planeta e procurar gases-traço na atmosfera, incluindo metano e cloreto de hidrogênio.
Essas observações do NIRCam e do NIRSpec de Marte foram conduzidas como parte do programa do sistema solar de Observação de Tempo Garantido (GTO) do Ciclo 1 da Webb, liderado por Heidi Hammel da AURA.
-Por Margaret Carruthers, Instituto de Ciências do Telescópio Espacial
Fonte: NASA / Alise Fisher / 19-09-2022
https://blogs.nasa.gov/webb/2022/09/19/mars-is-mighty-in-first-webb-observations-of-red-planet/
Web Science Academy; Hélio R.M.Cabral (Economista, Escritor e Divulgador de conteúdos da Astronomia, Astrofísica, Astrobiologia e Climatologia).Participou do curso (EAD) de Astrofísica, concluído em 2020, pela Universidade Federal de Santa Catarina (UFSC).
Autor do livro: “Conhecendo o Sol e outras Estrelas”.
Acompanha e divulga os conteúdos científicos da NASA (National Aeronautics and Space Administration), ESA (European Space Agency) e outras organizações científicas e tecnológicas.
Participa do projeto S`Cool Ground Observation (Observações de Nuvens) que é integrado ao Projeto CERES (Clouds and Earth´s Radiant Energy System) administrado pela NASA. A partir de 2019, tornou-se membro da Sociedade Astronômica Brasileira (SAB), como astrônomo amador.
Participa também do projeto The Globe Program / NASA Globe Cloud, um Programa de Ciência e Educação Worldwide, que também tem o objetivo de monitorar o Clima em toda a Terra. Este projeto é patrocinado pela NASA e National Science Fundation (NSF), e apoiado pela National Oceanic and Atmospheric Administration (NOAA) e U.S Department of State.
e-mail: heliocabral@coseno.com.br
Nenhum comentário:
Postar um comentário